
 

Department of Electronics Engineering 
IIT (ISM), Dhanbad 

 

 

LAB MANUAL 

 

DIGITAL SYSTEM DESIGN 
LAB 

 

ECC 204 

 
Conducted in: 

 

Part I:  

Digital Electronics Lab 

 

Part II:  

VLSI Lab 

 
 



1  

 
 
 
 

1.   Be regular to the lab. 

General Instructions 

DO’S DON’TS 

1. Do not exceed the voltage Rating. 

2. Follow proper dress code. 

3. Maintain silence. 

4. Know the theory behind the experiment 

before coming to the lab. 

5. Identify the different leads or terminals or 

pins of the IC before making connection. 

6. Know the Biasing Voltage required for 

different families of IC’s and connect the 

power supply voltage and ground terminals 

to the respective pins of   the IC‟s. 

7. Know the current and voltage rating of the    

IC‟s before using them in the experiment. 

8. Avoid unnecessary talking while doing the 

experiment. 

9. Handle the IC Trainer Kit properly. 

10. Mount the IC Properly on the IC ZIF 

Socket. 

11. While doing the interfacing, connect proper 

voltages to the interfacing kit. 

12. Keep the Table clean. 

13. Take a signature of the In-charge before 

taking the kit/components. 

14. After the completion of the experiments 

switch off the power supply and return the 

apparatus. 

15. Arrange the chairs/stools and equipment 

properly before leaving the lab. 

16. Know the basic theory related to the 

experiment before starting any new 

experiment 

 

2. Do not interchange the IC’s while doing 

the experiment. 
 

3. Avoid loose connections and short circuits. 
 

4. Do not throw the connecting wires to floor. 

5. Do not come late to the lab. 
 

6. Do not operate IC trainer kits 

unnecessarily. 
 

7. Do not panic if you don’t get the output. 
 



2 

 

Contents 
 

S. No. Name of  Experiments Page 

no. 

 PART I : Digital Electronics  

01 Design and hardware implementation of: 

a. 2-bit Adder/Subtractor with XOR as well as NAND gates, 

b. 4:1 Multiplexer using universal gates and realization of Full Adder using 
Multiplexers, 

c. BCD Adder using two binary adders (IC based) and other gates, 

d. 3:8 Decoder and realization of Full Adder 

 

3 

6 

 

9 

12 

02 Realization of R-S, D and J-K latches and D Flip-Flop 14 

03 Realization of Mod-8 Up-Down Ripple Counter 17 

04 Realization of synchronous Mod-3 and Mod-2 counters 20 

05 Realization of higher Mod counter by cascading lower Mod counters 22 

 PART II: Digital System Design using HDL and EDA  

06 Modeling different types of gates: 

(a) 2-input NAND (b) 2-input OR gate (c) 2-input NOR gate (d) NOT gate 

(e) 2-input XOR gate (f) 2-input XNOR gate 

 

24 

07 Modeling (a) Half-adder  

                 (b) Full-adder 

 

26 

27 

08 Modeling a “D flip-flop” 29 

09 Modeling a “D Latch” 31 

10 Modeling a (a) 2-to-1 Multiplex (b) 2-to-4 Decoder (c) Tri-State Buffer 

[Do It Yourself] 

 

32 

11 Modeling a 4-to-1 Multiplexer 

[Do It Yourself] 

 

32 

12 Modeling a 4-bit PARALLEL ADDER 

[Do It Yourself] 

 

32 

13 Modeling a 4-bit adder-subtractor circuit 

[Do It Yourself] 

 

33 



3 

 

Experiment-1(a) 

Aim: Design and hardware implementation of 2-bit Adder/Subtractor with XOR as well as NAND 

gates. 
 

Apparatus required: Bread board, Connecting wires, IC 7400, IC 7486, IC 7404, IC 7408, IC trainer 

kit 
 

Theory: 

Half-Adder: A combinational logic circuit that performs the addition of two data bits, 

A and B, is called a half-adder. Addition will result in two output bits; one of which 

is the sum bit, S, and the other is the carry bit, C. The Boolean functions describing 

the half-adder are: 
                      S =AB  

                      C = AB 

Half-Subtractor: A combinational logic circuit that performs the subtraction of two 

data bits, A and B, is called a half-subtractor. Subtraction will result in two output 

bits; one of which is the difference bit, and the other is the borrow bit. The Boolean 

functions describing the half-subtractor are: 
                      Difference =AB        

                      Borrow = A’B 

 

Truth Table and observation Table 
 

Full Adder 
 

   

   Half Subtractor 

A B   Difference  Borrow  

0 0      0    0  

0 1      1    1  

1 0      1    0  

1 1      0    0  

 

Half Adder 

A B   S C 

0 0      0    0 

0 1      1    0 

1 0      1    0 

1 1      0    1 

 



4 

 

Boolean Expressions using K-map: 
 

Half Adder 
 

Sum= AB Carry=AB 
 

 
Half Subtractor 

 

Difference= AB Borrow=A’B 
 

 
Digital Circuit Diagram: 

 

Half Adder   

                                 
 

 

 
 

 



5 

 

Half Subtractor: 

 

 
 

 

 
Procedure: 

1. Connect the trainer kit to ac power supply. 

2. Connect the all ICs pins for given logic functions to be realized. 

3. Connect the inputs to logic sources and output to logic indicator. 

4. Apply various input combinations and observe output for each one. 

5. Verify the truth table for each input/ output combination. 

6. Repeat the process for all logic functions. 

7. Switch off the ac power supply. 

 

 
 

 

 

 

 

 

 

 

 



6 

 

Experiment 1(b) 

Aim: Design and hardware implementation of 4:1 Multiplexer using universal gates and realization of 

Full adder using Multiplexers. 

Apparatus and Components Required: Connecting wires, IC Trainer Kit, IC 7400, IC 7410, IC 7420.  

Theory: Multiplexers are very useful components in digital systems.  They transfer a large number of 

information units over a smaller number of channels, (usually one channel) under the control of selection 

signals. Multiplexer means many to one. A multiplexer is a circuit with many inputs but only one output. 

By using control signals (select lines) we can select any input to the output. Multiplexer is also called as 

data selector because the output bit depends on the input data bit that 

is selected.  The general multiplexer circuit has 2n input signals, n control/select signals and 1 output signal. 

Simple block diagram of 4:1 MUX is given below. 

 

Truth Table: 
 

 

                 Digital Circuit Diagram of MUX using NAND Gates : 

     

                                      

INPUT OUPUT 

A B I0 I1 I2 I3 Y(V) 

0 0 0 X X X 0 

0 0 1 X X X 1 

0 1 X 0 X X 0 

0 1 X 1 X X 1 

1 0 X X 0 X 0 

1 0 X X 1 X 1 

1 1 X X X 0 0 

1 1 X X X 1 1 

 



7 

 

Full adder implementation by using 4:1 Mux: 

Two 4:1 Mux can be used to realize carry and adder of full adder separately. The truth table of 

full adder is given by: 

 

 

 
S=∑(1,2,4,7) 

C=∑(3,5,6,7) 

 

 

 

 

 

 

 

 

 

Let A, B be the selection line of 4:1 MUX on observing the truth table 

On observing the truth table following cases can be deduced for Sum of full adder: 

When A=0, B=0; S=Cin 

When A=0, B=1; S=Cin’  

When A=1, B=0; S=Cin’ 

When A=1, B=1; S=Cin 

The SOP expression for Sum is given by  

S = A’B‟Cin +A’BCin’+AB’Cin’+ABCin  

The Circuit Diagram for Sum is given by 

INPUTS OUTPUTS 

A B Cin S C 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 



8 

 

Similar method can be also applied for the Carry of full adder 

When A=0, B=0; C=0 

When A=0, B=1;C=Cin 

When A=1;B=0;C=Cin 

When A=1;B=1;C=1 

The SOP expression for carry of full adder given by C=A’BCin+AB’Cin+AB  

The Circuit diagram of Carry implementation of full adder by 4:1 Mux given by: 

 
Procedure: 
 

1. Connect the trainer kit to ac power supply. 

2. Connect the NAND gates IC for given logic functions to be realized. 

3. Connect the inputs to logic sources and output to logic indicator. 

4. Apply various input combinations and observe output for each one. 

5. Verify the truth table for each input/ output combination. 

6. Repeat the process for all logic functions. 

7. Switch off the ac power supply. 

 

      
  



9 

 

 

Experiment 1-c 

Aim: Design and hardware implementation of BCD adder using two binary adder (IC 7483) and other 

gates. 

Apparatus and Components required: Bread Board, IC trainer kit, Connecting wires, IC 7483, 

IC 7400 

Theory:  The full form of BCD is Binary-Coded Decimal. Since this is a coding scheme relating 

decimal and binary numbers, four bits are required to code each decimal number. The code is also 

known as 8-4-2-1 code. This is because 8, 4, 2, and 1 are the weights of the four bits of the BCD 

code. The weight of the LSB is 20 or 1, that of the next higher order bit is 21or 2, that of the next 

higher order bit is 22 or 4, and that of the MSB is 23 or 8. Therefore, this is a weighted code. 0 to 

9 is the legal number available in BCD for numbers greater some adjustment to be carried out for 

conversion into BCD. 

Binary to BCD: 

Binary Number BCD 
 

Y3 Y2 Y1 Y0 A B C D E 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 0 

0 0 1 1 0 0 0 1 1 

0 1 0 0 0 0 1 0 0 

0 1 0 1 0 0 1 0 1 

0 1 1 0 0 0 1 1 0 

0 1 1 1 0 0 1 1 1 

1 0 0 0 0 1 0 0 0 

1 0 0 1 0 1 0 0 1 

1 0 1 0 1 0 0 0 0 

1 0 1 1 1 0 0 0 1 

1 1 0 0 1 0 0 1 0 

1 1 0 1 1 0 0 1 1 

1 1 1 0 1 0 1 0 0 

1 1 1 1 1 0 1 0 1 



10 

 

Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from 

a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 

19, the 1 in the sum being an input carry. The output of two decimal digits must be represented in 

BCD and should appear in the form listed in the columns. A BCD adder that adds 2 BCD digits 

and produce a sum digit in BCD. The 2 decimal digits, together with the input carry, are first added 

in the top 4-bit adder to produce the binary sum. Binary Coded Decimal is a method of using binary 

digits to represent the decimal digits 0 through 9. The valid BCD numbers are (0000 to 1001) 

BCD. Each digit of the decimal number will be represented by its four-bit binary equivalent. 

Following, three cases arises in BCD addition 

 

1. The resulting BCD number equal to less than (1001) BCD. 

2. The resulting BCD number greater than (1001) BCD. 

3. Carry is generated in the BCD addition. 

 

The two BCD inputs to be added are applied at inputs A and B of the first binary adder IC 7483. 

The sum output of the first binary adder is given to the B input of the second binary adder. The A 

input of the binary adder is given (0110) BCD when a carry is generated from the first adder or 

when sum from the first binary adder is greater than (0110) BCD, else A input is (0000) BCD. The 

following Boolean expression is used to find whether (0110) BCD or (0000) BCD needs to be 

applied to the A input, Cout = Cout1 + S4 (S3 + S2). Where S4, S3, S2, S1 are the sum of the BCD 

from the first binary adder with S4 as the MSB and S1 as the LSB. Cout1 is the carry output from 

the first binary adder. 

 

Digital Circuit Diagram of BCD Adder (only NAND Gate to be used in Lab): 

 



11 

 

Truth Table: 

 
 

Procedure: 
 

1. Connect the trainer kit to ac power supply. 

2. Connect the all ICs pins for given logic functions to be realized. 

3. Connect the inputs to logic sources and output to logic indicator. 

4. Apply various input combinations and observe output for each one. 

5. Verify the truth table for each input/ output combination. 

6. Repeat the process for all logic functions. 

7. Switch off the ac power supply. 
 

 

 Questions: 

 

1. What is the difference between Decimal adder and BCD adder? 

2. What is the operating temperature and supply voltage range for IC7483? 

3. Why do we add 6 in BCD addition? 

  



12 

 

 

Experiment 1-d 

Aim: Design and hardware implementation of 3:8 Decoder (using NAND gates) and 

implementation of Full Adder subsequently. 
 

Apparatus and Components Required: Bread Board, IC trainer Kit, IC 7400, Connecting wires. 

Brief Theory: A decoder is a combinational circuit that converts binary information from n input 

lines to up to 2n output lines. These decoders are called n-to-m line decoders such that: m ≤ 2n. A 

3-to-8 line decoder has three inputs and eight outputs. The decoder decodes the input binary code 

represented by the three bits and generates all eight min-terms of the inputs. Only one output is 

one while the other seven are zeros. The logical block diagram given by: 

 

Truth Table: 

 

 

 

 

Circuit Diagram (to be designed by using only NAND gates in Lab): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Output 
A B C D0 D1 D2 D3 D4 D5 D6 D7 
0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 



13 

 

 

 

 

Full Adder realization: 

 

Full Adder can be implemented using 3 to 8 decoder in following ways: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure: 

1. Using truth table obtain the logical expression for this decoder. 

2. Draw the circuit diagram for the obtained reduced function using minimum number of 

gates. 

3. Implement the reduced circuit using digital ICs on a bread board. 

4. Observe the output and record it in the observation table and check it with the truth table. 
 

5. After implementing decoder, realize logical expression of sum and carry for a full adder 

using 3 to 8 line decoder. 

 

 

Questions: 
 

1. Draw logic diagram of a 2 to 4 line decoder using NOR gates only. 

2. Construct a 5 × 32 decoder with four 3 × 8 decoders with enable input and one 2 × 4 decoder. 

3. What is the difference between decoder and demultiplexer? Can a decoder be used as 

demultiplexer? How / Why? 

  



14 

 

 

Experiment 2 

Aim: Realization of R-S, D, J-K latches and D flip-flop using NAND gates only. 

Apparatus and Components required: Bread board, IC trainer kit. Connecting wires, IC 7400, IC 

7410 

Theory: Logic circuits that incorporate memory cells are called sequential logic 

circuits; their output depends not only upon the present value of the input but also 

upon the previous values. Sequential logic circuits often require a timing generator (a 

clock) for their operation. The latch (flip-flop) is a basic bi-stable memory element 

widely used in sequential logic circuits. Usually there are two outputs, Q and its 

complementary value. 

1. S-R Latch: 

An S-R latch consists of two cross-coupled NOR gates.  An S-R flip-flop can also   be 

design using cross-coupled NAND gates as shown. A clocked S-R flip-flop has an 

additional clock input so that the S and R inputs are active only when the clock is high. 

When the clock goes low, the state of flip-flop is latched and cannot change until the 

clock goes high again. Therefore, the clocked S-R flip-flop is also called “enabled” S-

R flip-flop. 

 

2. D Latch:   

A D latch combines the S and R inputs of an S-R latch into one input by adding   an 

inverter. When the clock is high, the output follows the D input, and when the clock 

goes low, the state is latched. 

 

S R Q Q‟ 

0 
 

0 
 

1 
 

1 

0 
 

1 
 

0 
 

1 

Prev 

0 

1 
 

Undefined 

prev 

1 

1 
 

Undefined 

 

Clk D Q Q‟ 

0 
 

1 
 

1 

x 

0 

1 

Prev 

0 

1 

Prev 

1 

0 

 



15 

 

 

3. JK Latch:   

The JK latch is a less often used alternative that instead of setting or resetting the value, 

toggles the value on an input. 

 

 Latch: 

 

 

4. JK Flip Flop: 

 

The JK flip-flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents 

the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level 

"1". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1", 

"logic 0", "no change" and "toggle”. Although this circuit is an improvement on the clocked SR flip-

flop it still suffers from timing problems called "race" if the output Q changes state before the timing 

pulse of the clock input has time to go "OFF". To avoid this the timing pulse period (T) must be kept as 

short as possible (high frequency). As this is sometimes not possible with modern TTL IC's the much-

improved Master- Slave JK Flip-flop was developed. The master-slave flip-flop eliminates all the timing 

problems by using two SR flip-flops connected together in a series configuration. One flip-flop act as 

the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts as the 

"Slave" circuit, which triggers on the falling edge of the clock pulse. This results in the two sections; 

the master section and the slave section being enabled during opposite half-cycles of the clock signal. 

 

Digital circuit Diagram of Master-Slave J-K Flip Flop 

 

J K Q Q‟ 

0 
 

0 
 

1 
 

1 

0 
 

1 
 

0 
 

1 

Prev 

0 

1 
 

Toggles 

Prev 

1 

0 
 

Toggles 

 



16 

 

 

Function Table of Master Slave Flip-Flop: 

 

The input signals J and K are connected to the gated "master" SR flip-flop which "locks" the input 

condition while the clock (Clk) input is "HIGH" at logic level "1". As the clock input of the "slave" flip-

flop is the inverse (complement) of the "master" clock input, the "slave" SR flip-flop does not toggle. 

The outputs from the "master" flip-flop are only "seen" by the gated "slave" flip- flop when the clock 

input goes "LOW" to logic level "0". When the clock is "LOW", the outputs from the "master" flip-flop 

are latched and any additional changes to its inputs are ignored. The gated "slave" flip-flop now responds 

to the state of its inputs passed over by the "master" section. Then on the "Low-to-High" transition of 

the clock pulse the inputs of the "master" flip-flop are fed through to the gated inputs of the "slave" flip-

flop and on the "High-to-Low" transition the same inputs are reflected on the output of the "slave" 

making this type of flip-flop edge or pulse- triggered. 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

Experiment 3 

Aim: Realization of Mod 8 up-down ripple counter. 
 

Apparatus and Components required: Bread Board, Connecting wires, IC 7476, IC 7400, IC 7432, 

IC 7404 
 

Theory: A counter is a digital circuit which is used to count the number of clock pulses applied to 

a flip-flop. It can be used for frequency divider, also for generating square waveforms. A n-bit 

ripple counter can count up to 2n states. It is known as ripple counter because of the way the clock 

pulse ripples its way through the flip-flops. Flip-flops in ripple counter works in asynchronous 

mode. Also, a few numbers of logic gates are needed to design asynchronous counters, so they are 

elementary in design and less expensive. To implement a ripple counter, we require IC 7476 which 

is a negative edge triggered JK flip flop. J and K pin is connected permanently to logic high to 

make it work as toggle (T) flip flop. Mode control pin (M) is required to make it work as up-down 

counter, when M=0 (logic low), it works as up counter and M=1(logic high) represents down 

counter. 

 

Circuit Diagram of Mod 8 ripple counter: 

 

 

 

 

 

 

 



18 

 

Sequence table of Up counter (M=0): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence table for down counter (M=1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock pulse Qc QB Qa 

1 1 1 1 

2 1 1 0 

3 1 0 1 

4 1 0 0 

5 0 1 1 

6 0 1 0 

7 0 0 1 

8 0 0 0 

Clock pulse Qc QB Qa 

1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 1 

5 1 0 0 

6 1 0 1 

7 1 1 0 

8 1 1 1 



19 

 

 

Timing Diagram: 

 

Procedure: 
 

1. Make the connections as per the above circuit diagram.  

 

2. Switch on the main power supply and the trainer kit.  

 

3. Note down sequence table for mod 8 ripple counter. 

 

 

Questions: 

 

1. What is the difference between ripple counter and synchronous counter? 

2. How many states will there be in a 4-bit ripple counter? 

3. What is major drawback of a ripple counter? 
  



20 

 

 

Experiment 4 

Aim: Realization of Mod-2 and Mod-3 Synchronous counter. 

 

Apparatus and Components required: Bread Board, Connecting wires, IC 7476, IC 7400 

 

Theory: 

A counter is a sequential logic circuit that goes through a prescribed sequence of states upon the 

application of input pulses.  The prescribed sequence can be a binary sequence or any other sequence.  A 

counter that goes through 2N (N is the number of flip-flops in the series) states is called a binary 

counter.  The modulus of a counter is the number of different states it is allowed to have.  Counter 

modulus is normally 2N unless controlled by a feedback circuit which limits the number of possible 

states (an example being the decimal counter).  Counters are very widely used in almost all computers 

and other digital electronic systems.  There are two major categories of counters: asynchronous counters 

and synchronous counters. 

Asynchronous Counters 

Counters arranged so that the output of one flip-flop generates the clock input of the next higher stage 

are generally called asynchronous counters (or ripple counter).  In other words, in asynchronous 

counters, the CLK inputs of all flip-flops (except the first one) are triggered not by the incoming pulses 

but rather by the transition that occurs in other flip-flops.  Therefore, the change of state of a particular 

flip-flop is dependent upon the present state of other flip-flops. 

Synchronous Counters 

Synchronous counters eliminate the cumulative flip-flop delay seen in ripple counter.  Each flip-flop is 

clocked by the same clock signal.  Each gate selectively controls when each more significant bit flip-

flop is to change state (toggle) on the next clock transition.  Such control (enable) can be realized by 

setting, for example, the J and K inputs of a J-K flip-flop.  Because of this control, the addition of a 

common clock will synchronize data transfer and all flip-flops will change state simultaneously.  The 

important feature of a synchronous counter is that the transitions of the individual flip-flops are 

synchronized to a master clock signal. 

To Design Synchronous counter: 

1. Decide the number and type of flip-flop (FF) 

2. Write excitation table for flip-flop 

3. State diagram and circuit excitation table 

4. Obtain Boolean expression 

5. Draw circuit diagram 

Mod-3 Synchronous Counter 

No. of FF = 2 

No. of bits = 2 



21 

 

Mod-2 Synchronous Counter 

No. of FF = 1 

No. of bits = 1 

Sequence table: Mod-3                                                Sequence table: Mod-2 

                                            

Count QB QA 

0 0 0 

1 0 1 

2 1 0 

 

Circuit Diagram of Mod-3 Synchronous counter: 

 

Procedure: 
 

1. Make the connections as per the above circuit diagram.  

 

2. Switch on the power supply and the trainer kit.  

 

3. Note down the state of the counter and verify it with the sequence table for mod-2 and mod-3 

Synchronous counter. 

 

 

Questions: 

 

1. What is the difference between synchronous counter and asynchronous counter? 

2. What is the frequency of each stage of the flip-flops? 

3. Realize this circuit using D-flip-flop? 

4. Design the circuit diagram of mod-4 synchronous counter 

 

 

Count Q 

0 0 

1 1 



22 

 

 

Experiment 5 

Aim: Realization of higher Mod counter by cascading lower Mod counters. 

Apparatus and Components required: Bread Board, Connecting wires, IC 74LS90 

 

Theory: 

Counter circuits can be cascaded to increase both the modulus of the count sequence and the frequency 

division. Large counter applications requiring several stages of cascaded counters include digital time 

clocks, frequency dividers, and synchronization circuits. 

 

The simplest example of cascaded counter stages is an asynchronous counter. The individual toggle flip-

flop stages of an asynchronous counter are MOD-2 counters. MOD-2 counters are cascaded by routing 

the output of one stage into the clock input of the next stage. With each cascaded stage, the modulus of 

the counter increases. The final modulus of the counter is equal to the modulus of the individual stages 

multiplied together. Thus, a 4-bit asynchronous counter has a modulus of 2 x 2 x 2 x 2 = 16. The output 

frequency from the final stage is equal to the input frequency divided by the modulus. 

 

Block Diagram of Mod-16 counter using Cascaded MOD-2 Counters: 

 

 

The 74LS90 IC counter is an example of a counter circuit that requires cascading in order to obtain a 

decade counter. The decade counter is formed by cascading a MOD-2 counter with a MOD-5 counter. 

The final modulus is 2x5, or 10. Several 74LS90 counters could be cascaded together to obtain MOD-

10, MOD-100, and MOD-1000 counters. The most significant output bit, QD, is used as the cascaded 

clock input to the next stage. The modulus of the cascaded counter is not limited to a multiple of the full 

modulus of the counters in the cascaded circuit. It can be fine-tuned to be any integer value by pre-

setting or clearing the count stages as required. 

 

 

 



23 

 

 

 

Block Diagram of Mod-1000 counter using Cascaded Mod-10 Counters: 

 

Procedure: 
 

1. Make the connections as per desire counter circuit.  

 

2. Switch on the power supply and the trainer kit.  

 

3. Note down the state of the counter and verify it. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

Experiment 6 (a) 

Aim: Using DATA FLOW type of architectural modeling, write a VHDL code to describe the 

functionality of a “2-input NAND” gate. Compile and simulate the code to obtain the timing waveform. 

Draw the RTL and Technology schematic of your design. 

 

Software Package used: Xilinx ISE Design Suite: System Edition 13.2 

 

Symbol:    

 
 

VHDL code: 

 

LIBRARY ieee; 
USE ieee.std_logic_1164.all; 

 
ENTITY nand2_gate IS 

 PORT ( a, b  : IN STD_LOGIC; 
        c : OUT  STD_LOGIC ); 

END nand2_gate; 

 
ARCHITECTURE nand2_gate_arch OF nand2_gate IS 

BEGIN 
 c <= a NAND b; 

END nand2_gate_arch; 

 

Stimuli for input ports: 

 
Clock Parameters Port a Port b 

Signal Name /nand2_gate/a /nand2_gate/b 

Value Radix Binary Binary 

Leading Edge Value 1 1 

Trailing Edge Value 0 0 

Starting at Time Offset 0 0 

Cancel after Time Offset <blank> <blank> 

Duty Cycle (%) 50 20 

Period 10 ns 10 ns 

 

Waveform: 

 

 
 

 

 



25 

 

RTL Schematic: 

 
Technology Schematic: 

 
 

Experiment 6 (b – f): 
 

In a similar way, using DATA FLOW type of architectural modeling, write VHDL codes to 

describe the functionality of the following gates: 

 

b) 2-input OR gate 

c) 2-input NOR gate   

d) NOT gate 

e) 2-input XOR gate 

f) 2-input XNOR gate 

 

Compile and simulate the codes to obtain the timing waveform. Draw the RTL and Technology 

schematic of the above gates. 

 



26 

 

Experiment 7 (a) 

Aim: Using DATA FLOW type of architectural modeling, write a VHDL code to describe the 

functionality of a “HALF ADDER” circuit. Compile and simulate the code to obtain the timing 

waveform. Draw the RTL and Technology schematic of your design. 

 

Software Package used: Xilinx ISE Design Suite: System Edition 13.2 

 

VHDL code: 

 

 
 

Stimuli for input ports: 

 
Clock Parameters Port i1_ha Port i2_ha 

Signal Name /ha/ i1_ha /ha/ i2_ha 

Value Radix Binary Binary 

Leading Edge Value 1 1 

Trailing Edge Value 0 0 

Starting at Time Offset 0 0 

Cancel after Time Offset <blank> <blank> 

Duty Cycle (%) 50 20 

Period 10 ns 10 ns 

 

 

Waveform: 

 

 
 

 

Draw the RTL and Technology schematic of your design 

 



27 

 

Experiment 7 (b) 

Aim: Use two HALF ADDERS and one OR gate as components to model a FULL ADDER using 

“Component Instantiation”. Compile and simulate the codes to obtain the timing waveform. Draw the 

RTL and Technology schematic of your design. 

 

Software Package used: Xilinx ISE Design Suite: System Edition 13.2 

 

Block diagram: 

 

 
 

VHDL code: 

 

 
 

 

 

 

 

 



28 

 

 

Stimuli for input ports: 

 
Clock Parameters Port i1_fa Port i2_fa Port i3_fa 

Signal Name /fa/ i1_fa /fa/ i2_fa /fa/ i2_fa 

Value Radix Binary Binary Binary 

Leading Edge Value 1 1 1 

Trailing Edge Value 0 0 0 

Starting at Time Offset 0 0 0 

Cancel after Time Offset <blank> <blank> <blank> 

Duty Cycle (%) 50 20 50 

Period 10 ns 20 ns 40 ns 

 

 

Observe the waveform 

 

 

RTL: 

 

 
 

 

 

 

 

 

 

 

 



29 

 

Experiment 8 

Aim: Use VHDL to describe the functionality of a “D flip-flop”. Compile and simulate the code to 

obtain the timing waveform. Draw the RTL and Technology schematic of your design. 

 

Software Package used: Xilinx ISE Design Suite: System Edition 13.2 

 

Block diagram: 

 

 
 

VHDL code: 

 

library ieee; 
use ieee.std_logic_1164.all; 

 
entity D_FF is 

  port ( D : in std_logic; 

     CLK_D  : in std_logic; 
     Q : out std_logic); 

end D_FF; 
 

architecture D_FF_arch of D_FF is 

begin 
  process (CLK_D) 

  begin 
   if (CLK_D'event and CLK_D = '1') then 
   Q <= D; 

   end if; 
  end process; 

end D_FF_arch; 

 

 

Stimuli for input ports: 

 
Clock Parameters Port D Port CLK_D 

Signal Name /D_FF/ D / D_FF / CLK_D 

Value Radix Binary Binary 

Leading Edge Value 1 1 

Trailing Edge Value 0 0 

Starting at Time Offset 0 0 

Cancel after Time Offset <blank> <blank> 

Duty Cycle (%) 20 50 

Period 60 ns 10 ns 

 

 

 



30 

 

Waveform: 

 

 
 

RTL: 

 

 
 

Technology Schematic: 

 

 
 

 



31 

 

Experiment 9 

Aim: Use VHDL to describe the functionality of a “D Latch”. Compile and simulate the code to obtain 

the timing waveform. Draw the RTL and Technology schematic of your design. 

 

Software Package used: Xilinx ISE Design Suite: System Edition 13.2 

 

VHDL code: 

 

 
 

Stimuli for input ports: 

 
Clock Parameters Port D Port CLK 

Signal Name /D_latch/ D / D_latch / CLK 

Value Radix Binary Binary 

Leading Edge Value 1 1 

Trailing Edge Value 0 0 

Starting at Time Offset 0 0 

Cancel after Time Offset   

Duty Cycle (%) 20 50 

Period 20 ns 10 ns 

 

Waveform: 

 

 
 

 



32 

 

Experiment 10 

[Do It Yourself] 
 

Use ‘WHEN’ statement to model a: 

(a) 2-to-1 Multiplex 

(b) 2-to-4 Decoder 

(c) Tri-State Buffer 

Compile and simulate the codes to obtain the timing waveform. Draw the RTL and Technology 

schematics of the above circuits. 

 

Experiment 11 

[Do It Yourself] 
 

Use a 2-to-1 MUX as a component to model a 4-to-1 Multiplexer using “Component Instantiation”. 

Draw the RTL and Technology schematic of your design. 

 

 

 

Experiment 12 

[Do It Yourself] 
 

Use four FULL ADDERS as components to model a 4-bit PARALLEL ADDER using “Component 

Instantiation”. Compile and simulate the code to obtain the timing waveform. Draw the RTL and 

Technology schematic of your design. 

 

 
 



33 

 

Experiment 13 

[Do It Yourself] 
 

Use “Component Instantiation” to model a 4-bit adder-subtractor circuit shown below. Compile and 

simulate the code to obtain the timing waveform. Draw the RTL and Technology schematic of your 

design. 

 

 

 

 

 

 

 

 


